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Background

Embedding moral capabilities in artificial
agents can aid the development of aligned Al
Morality can be learnt from experience via RL.
In multi-agent (social) environments,
complex population-level phenomena can
emerge from individuals’ learning interactions.
Real-world agent societies are likely to be
morally heterogeneous = how might learning
agents co-evolve in such societies?

We present the first study to analyze behavior
& population dynamics of learning in

agents with diverse moral preferences.

Moral values as Intrinsic Rewards in RL

* We represent a variety of consequentialist &
norm-based moral frameworks (anti-social &
pro-social) as intrinsic rewards for RL agents.
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Methodology

Environment:

Iterated Prisoner’s Dilemma
(IPD); game state = current

opponent’s previous single move.
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Partner selection in populations:

At every step, an agent M selects an opponent
O (using each playet’s single previous move as

the szate), then they play a single dilemma game.

The partner selection mechanism creates a
tension between individual interest & signaling
cooperativeness to the group. i populaion mejortyS

. threshold > 85th percentile
Each population of N=16 '
agents consists of 8x majority
player type, 1x each other type
(8 populations in total).

Learning Algorithm:
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RL 1s used to learn to select partner & play
from a single reward.

Each agents learns independently via Deep Q-
Learning using an intrinsic moral reward.
Agents act according an €-greedy policy.
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Results (key highlights)

How does the prevalence of diverse moral agents
in populations affect individual agents’ learning
behaviors & emergent population-level outcomes?

—> The predominance of U#litarian & Virtue-

kindness agents leads to greatest cooperation
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—> Selfish players learn mote cooperative policies in
majority-1 irtue-equality populations
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—> Deontological agents self-sabotage (select
antisocial opponents to avoid violating their
moral norm) & others learn to exploit them

Selection dynamics across players
in population majority-De
(# times selected)
(over episodes 1-30000)
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Conclusion

Our results demonstrate the potential of using
intrinsic rewards for modeling moral
preferences in agents with RL.

We provide a methodology for studying
emergent behaviors & unintuitive outcomes in
heterogeneous societies of learning agents.
Agents’ actions are consistent with their
reward definitions: pro-social agents learn to
cooperate, and anti-social agents learn to defect.
Consequentialist (U#) agents take longer to learn
to cooperate than the norm-based agents (De).
Norm-based (17-K7) agents go through
instability before converging to cooperation.
With the selection mechanism, equality-focused
moral players can steer self-interested agents
towards more cooperative behavior.
Narrowly-defined norms for De agents lead to
the development of self-sabotaging behavior

& cause negative outcomes for the population.

Next Steps:

* Apply this framework to the moral alignment
of real-world learning systems (LLM agents).
Extend analysis to other moral frameworks,
multi-objective & partially observable scenarios.
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